Clinial example 1: Laryngoscopy
Optimization problem
In this example, the user can follow the instructions below to run the full optimization process through: path, sequential, and simultaneous optimization step.
The run files for each step are as follows. The user-defined parameter are the anatomical model (.ply format), starting point, target point and the number of control points, path points. A B-spline curve will be optimized by the function below.
import numpy as np
import scipy
from ctr_framework.design_method.path_opt import path_opt
# from path_opt import path_opt
# Initialize the number of control points and path points
num_cp = 25
num_pt = 100
# User-defined start point and target point
sp = np.array([-23,-8,-85])
fp = np.array([87,-27,-193])
# mesh .PLY file
filename = 'trachea.ply'
path_opt(num_cp,num_pt,sp,fp,filename)
Once the collision-free path is found, the sequental optimization needs to be performed in order to get a better initial guesses for the simultaneous CTR optimization problem. The codes are as follow
import numpy as np
import scipy
import os
from openmdao.api import pyOptSparseDriver
from openmdao.api import ScipyOptimizeDriver
try:
from openmdao.api import pyOptSparseDriver
except:
pyOptSparseDriver = None
from ctrseq_group import CtrseqGroup
from lsdo_viz.api import Problem
from mesh import trianglemesh
from initpt import initialize_pt
from collision_check import collision_check
from log import log
import shutil
import time
from equofplane import equofplane
from findcircle import findCircle
from seq_opt import seq_opt
#########################################
############## initialization ###########
#########################################
# number of waypoints
viapts_nbr=10
# number of links
num_nodes = 50
# Extract the waypoints from optimized path
pt = initialize_pt(viapts_nbr)
pt_pri = initialize_pt(viapts_nbr * 2)
pt_full = initialize_pt(100)
# initial robot configuration
# Tube 1(inner tube) ID, OD
d1 = 0.65
d2 = 0.88
# Tube 2
d3 = 1.076
d4 = 1.296
# Tube 3(outer tube)
d5 = 1.470
d6 = 2.180
# Tube curvature (kappa)
kappa_init = np.array([0.0061, 0.0131,0.0021]).reshape((1,3))
# The length of tubes
tube_length_init = np.array([200, 120,65]).reshape((1,3)) + 100
# The length of straight section of tubes
tube_straight_init = np.array([150, 80,35]).reshape((1,3)) + 50
# joint variables
alpha_init = np.zeros((k,3))
alpha_init[:,0] = -np.pi/2
alpha_init[:,1] = np.pi/1.5
alpha_init[:,2] = -np.pi/3
beta_init = np.zeros((k,3))
beta_init[:,0] = -280
beta_init[:,1] = -205
beta_init[:,2] = -155
# initial torsion
init_dpsi = np.random.random((k,3)) *0.01
rotx_ = 1e-10
roty_ = 1e-10
rotz_ = 1e-10
loc = np.ones((3,1)) * 1e-5
mdict = {'alpha':alpha_init, 'beta':beta_init,'kappa':kappa_init,
'tube_section_straight':tube_straight_init,'tube_section_length':tube_length_init,
'd1':d1, 'd2':d2, 'd3':d3, 'd4':d4, 'd5':d5, 'd6':d6, 'initial_condition_dpsi':init_dpsi,
'rotx':rotx_,'roty':roty_ ,'rotz':rotz_ , 'loc':loc,
}
scipy.io.savemat('initial.mat',mdict)
# Base frame
base = np.array([-10,35,20]).reshape((3,1))
rot = np.array([3.14,0,0]).reshape((3,1))
p_plane = np.array([[-10,35,20],[-12,20,20],\
[-20,15,20]])
# mesh .PLY file
meshfile = 'trachea.ply'
seq_opt(num_nodes,viapts_nbr,base,rot,meshfile)
The second step serves as an initial guesses for the final step, which is the patient-speific simultaneous optimization. In this step, the optimizer optimizes k robot configurations simultaneously to obtain a robot design and safe motion plan.
import numpy as np
import scipy
import os
from openmdao.api import pyOptSparseDriver
from openmdao.api import ScipyOptimizeDriver
try:
from openmdao.api import pyOptSparseDriver
except:
pyOptSparseDriver = None
# from ctrviz_group import CtrvizGroups
from ctrsimul_group import CtrsimulGroup
from lsdo_viz.api import Problem
from mesh_simul import trianglemesh
from initpt import initialize_pt
from collision_check import collision_check
import time
from equofplane import equofplane
from fibonacci_sphere import fibonacci_sphere
from log import log
from sim_opt import sim_opt
# Initialize the number of number of links and waypoints
num_nodes = 50
k = 10
# robot initial pose
base = np.array([-10,35,20]).reshape((3,1))
rot = np.array([3.14,0,0]).reshape((3,1))
# mesh .PLY file
meshfile = 'trachea.ply'
# run simultaneous optimization
sim_opt(num_nodes,k,base,rot,meshfile)